
Thor: Whiteboard Capture and Indexing

Mihai Parparita ∗ Szymon Rusinkiewicz†

January 5, 2004

Abstract

We present the first phase of the Thor project.
Using consumer grade digital cameras, we describe
how a system can be built that records whiteboard
content, and then stores the resulting strokes in
a space-efficient, vector format. This acquisition
portion is designed to serve as the foundation for
a larger system that enables captured whiteboard
data to be indexed and then searched using graph-
ical queries. The system is evaluated, and results
are presented.
Keywords: Computer vision, stroke capture, in-
dexing, searching.

INTRODUCTION

Whiteboards (and their close cousins blackboards)
have become increasingly prevalent in office and
classroom settings. In the former, they are used
for impromptu meetings, for pre-drafting and for
keeping track of to do lists and other reminders,
as enumerated in [6]. Blackboards have long been
used as instructional tool, possessing the advan-
tage over pre-made slides that material can be con-
structed on the spot, better showing the process by
which information presented was arrived at. The
trade-offs of using a whiteboard are intransience
and lack of concrete organizational schemes. Hav-
ing limited space, whiteboards cannot be added to
infinitely. The only option is to erase existing con-
tent, but unless it is saved in a somewhat clunky
manner (scribbles are either copied by hand or a
picture is taken), data is lost. The other disadvan-
tage is that information arrangement is very ad-
hoc, and a viewer who is unfamiliar with the lay-
out is reduced to scanning the entire whiteboard

∗Princeton University. email: mparpari@princeton.edu
†Princeton University. email: smr@cs.princeton.edu

in order to find content (though emphasis marks
such as borders and different colors may be used as
aids, but again, their meaning is very much writer-
dependent).

As a way of counteracting these issues, several
systems have been proposed, including [6, 7]. Us-
ing a stroke capture mechanism, they work around
the intransience problem. To help with the limited
space issue, [6] transforms the entire whiteboard
surface into a projected area, the contents of which
can (on a group by group basis) be moved around
and reduced in size in order to make room for more
strokes.

The primary drawbacks of these projects are the
use of specialized equipment and a lack of focus
on large-scale organization. The contribution that
the Thor system makes to the field is to provide a
very easily attainable capture method, and to fo-
cus more on the information location portion of the
organizational side (this second aspect fill be fo-
cused on for the remainder of the project). Previ-
ous systems used enhanced capture environments
such as Smartboards (in [6]) and the Mimio prod-
uct (in [7]), both of which use specialized marker
tracking methods (ultrasonic in some cases, radio
tracking in others). Though these have the ad-
vantages of being very precise in terms of pen lo-
cation and stroke timing, they do have the usual
drawbacks of specialized equipment: lack of porta-
bility and price/complexity. In contrast, Thor
uses consumer-grade digital cameras that are set
to periodically capture traditional whiteboards or
blackboards. These are easily available, and can
be transported to any setting.

With regards to the organizational angle, Thor
will implement a scalable database-backed storage
mechanism that can easily queried for information.
This will be covered in the final version of this
write-up.

1



The rest of this paper provides an overview of
the system and evaluates its performance on real-
world data.

SYSTEM OVERVIEW

The stroke acquisition portion of Thor system is
divided into a few distinct phases. First, the cam-
era must be calibrated. Then, the capture loop can
be entered. This consists of recording a new im-
age, computing the differences between it and the
previous frame, thinning of captured strokes and
removal of occluders (e.g. people) and conversion
of stroke pixel data into control points.

Calibration

Although the capture system relies on digital cam-
eras, the analog-to-digital conversion that goes on
within them is still an imprecise process. Noise,
subtle changes in lighting conditions and other
phenomena can all affect the captured image, re-
sulting in ”differences” that do not reflect actual
changes in the written content. As a result, we
must get a feel for what constitutes the normal
range of values for pixels in a supposedly static
environment. The way in which the Thor sys-
tem achieves this is to capture several (i.e. 8 or
more) frames of the environment in its neutral
state (nothing is written, there is no definite move-
ment in front of the camera). This can be be done
for a short duration, to get a feel for the instanta-
neous level of changes, or over a longer period of
time (e.g. a whole day) to see what the complete
range of variations can be. Once this is done, the
margin of error for each pixel can be determined,
so that true differences can be separated from spu-
rious ones.

This calibration stage also allows us to deter-
mine what constitutes the ”background” for the
strokes that are written and then later are erased.
Since whiteboards are not layered beyond the
board itself and strokes drawn on top of it, cap-
turing the background in the beginning allows us
to not have to specifically keep track of what is
obscured and then later revealed.

Capture

Capture is currently done by mounting the con-
tents of a digital camera as yet another directory in
the file system, and then traversing it while look-
ing for image documents (importing is done via
QuickTime, so that most major graphics formats
are supported transparently). This allows white-
board meetings to be recorded without a computer
being present. In the future, cameras that support
remote control could be used to record these meet-
ings in real-time.

Consumer grade cameras currently support res-
olutions in the three to five megapixel range. The
Thor system can use images as low as 1 megapixel
(depending of whiteboard size and camera dis-
tance). In fact, lower resolution images have the
advantage of having less noise (if the camera down-
samples), of being faster to process, and of letting
the camera store more images without need for pe-
riodic downloading to a computer. The fact that
most cameras use USB 1.1 connections (limited
to 12 Mbps) and even if that bottleneck were to
be removed, the limiter would then be the storage
media, which has speeds of around 3 MB/s. This
prevents capture from being done much more often
than once every 10 seconds.

As an alternative capture method, webcam-
grade video cameras were considered. These also
had the advantage of low cost (sometimes even
lower than digital cameras), ubiquity and high re-
fresh rates. However, quality was too low to allow
large whiteboards to be captured - despite nomi-
nal 640 x 480 resolutions most cameras deal poorly
with non-ideal lighting conditions.

Differences

The difference algorithm uses a very simple pixel-
by-pixel approach. For each pixel, we look at the
change in its RGB components when compared
to the previous image. If this change is greater
than a fixed constant times the previously mea-
sured range, then we mark it as changed. Changed
pixels can mean one of two things: a new stroke
was drawn, or an existing one was erased. To dif-
ferentiate between these two cases, we look to see
if the new value is similar to the calibrated back-
ground color at that location. If this is the case,
then background has been revealed, and we con-

2



clude that a deletion took place. If not, then a new
addition must have been made.

Since the entire stroke extraction process de-
pends on the difference algorithm, care must
be taken to ensure that its output is accu-
rate. Therefore, as a post-processing step,
we apply a despeckling algorithm to the dif-
ference image, in order to remove stray val-
ues. The algorithm works in two passes. In
the first pass, we compute for each pixel how
many non-background (8-way) neighbors it has.

Figure 1: Computation of
differences without and with
despeckling

In the sec-
ond pass, we
can do one
of two things:
remove non-
background
pixels be-
cause they are
isolated, or
fill in back-
ground pixels
because they
are completely
surrounded
by non-
background
ones. The
first is done by
looking to see
how many non-
background
neighbors a
pixel has. If
this value is
less than 2,
and it has
no neighbors
with values
greater than
or equal to 2,
then the pixel
is replaced with
the background
color (we must
also look at the
counts for neighbors, since if we only looked at
the count for the pixel itself we would remove
endpoints of single-pixel thick lines). In the

”filling in” case, if a background pixel has 8
non-background neighbors, then it is replaced
with the average color of its neighbors. This is
done in order to prevent these one pixel holes
from affecting the thinning algorithm.

Once the differences are computed, the differ-
ence image is split up into continuously connected
sub-images (so that sets of strokes are separated).
For each sub-image, stroke thickness is estimated
by dividing the total number of content pixels by
the number of perimeter pixels (as described in
[2]). If this value is beyond a certain threshold
(i.e. the stroke is too thick), we assume that the
so-called ”stroke” is in fact an occuluder (e.g. a
person) and the sub-image should be discarded.
The rest of the steps are applied to each remain-
ing sub-image individually.

Thinning

Figure 2: Results of thinning

Once the pixels
representing
the newly-
written strokes
are determined,
we must then
reduce them to
their most basic
structure (this
means that, in
its current im-
plementation,
Thor does not
preserve stroke
thickness, but since most markers and chalk are of
uniform thickness, this is not a serious drawback).
The process is called thinning, and it involves
traversing all edge pixels of a stroke, iteratively
removing all those that are deemed extraneous
until a single pixel thick ”skeleton” remains. The
thinning implementation that we have chosen is
described in [8]. This implementation has the
advantages of performance and of not ”eroding
away” diagonal lines. The paper leaves some
functions unspecified, so the implementations we
have chosen are described below:

Seeding function: This function must deter-
mine how many contour loops are present in the
image, and what their starting points are. Con-

3



tour loops are defined as continuously connected
set of edge pixels (for example, a line would have
one contour loop, a hollow circle two, and a figure
eight three). For this, we chose to first build a list
of all background pixels. Then, the first element
from this list is picked, and a 4-way floodfill is
done, removing all encountered background pixels
from the list. The first encountered edge (non-
background) pixel is used as the starting point
of the current contour loop. The process is re-
peated until no more background pixels are left
in the list, with each iteration representing a con-
tour loop. To determine the predecessor of a start
point, we pick any of its background-colored neigh-
bors, and scan counter-clockwise from it until we
find a non-background neighbor (scanning must be
done CCW since the successor function works in a
clockwise order, and we are working our way back-
wards).

Termination function: The thinning algo-
rithm works its way around each contour loop, re-
moving extraneous pixels. Since it can take multi-
ple passes for all these to be processed, the process
cannot be stopped after a fixed number of steps.
[8] does not specify an exact iteration termination
function, so one had to be devised for Thor. It
is not as simple as seeing if the same pixel was
visited twice, since it could be encountered from
one direction and then another. We therefore keep
track of the pixel immediately following the last
one that was deleted, as well as its successor. If
we encounter this pair (in the same order) twice, it
means that we’ve done a full loop without deleting
any more edge pixels, therefore we are done with
this iteration.

Stroke Extraction

Once we have the set of thinned stroke pixel, we
can begin to convert them to vector form, i.e. a
list of control points that are then connected us-
ing various interpolation methods (currently the
system uses simple linear interpolation, but more
elaborate interpolation methods such as Catmull-
Rom splines could also be used). Systems such as
the one described in [7] use more complex stroke
extraction mechanisms; for example one that sepa-
rate strokes into straight-line and curved portions.
Unfortunately, the system described therein de-

pends on having continuous pen input (i.e. being
aware of drawing speed and stroke timing). Since
our capture recognition process is off-line, we are
reduced to using a simpler mechanism that only
deals with the stroke pixels.

Figure 3: Crossing pixels
that must be visited more
than once

The stroke
extraction algo-
rithm works by
first generating
vector versions
with as many
control points as
possible (i.e. one
for each pixel)
and then removes
the points in as-
cending order of
error. Therefore,
the first step
must be to build
up these ”dense” strokes that incorporate every
single pixel. Superficially, this seems very simple,
since we have thinned the images already, and it
should be a mater of picking any pixel, and then
following one of its non-background neighbors
after another. However, things begin to appear
more complicated when taking into account the
fact that strokes can intersect one another, and
thus the same pixel may belong to more than one
stroke. Therefore, the first step is to compute
for each pixel how many times it can be visited.
Based on the methods described in [4], we can
determine this based on the number of background
to non-background transitions that are made as
the pixels neighborhood is walked, as well as on
the number of non-background neighbors that it
has. The number of transitions is one indicative
of how many strokes are intersecting at this point.
If there are two transitions, then there is only
one stroke and the pixel should only be traversed
once. If there are four, then there are two strokes,
and the pixel can be visited twice, as in the case
of the top example in figure 3. However, we can
have cases where the number of intersections is
two or three, and yet the pixel is really at an
intersection of two strokes, as show in the lower
two examples in figure 3. This is where the
number of non-background neighbors comes in
to play. Therefore, the following table is used to

4



determine the number of visits:

Transitions Non-bg. Neighbors Visits
0 any 0
1 any 1
2 < 4 1
2 ≥ 5 2
3 < 2 1
3 ≥ 3 2
≥ 4 any 2

Once we have determined how many times each
pixel can be visited, then we can begin the second
phase, the actual traversal of pixels. One thing
that must be taken into account is to make sure
that when going through an intersection we do
not make an unnatural turn (e.g. an X-shaped
crossing should not be separated into to L-shaped
strokes that graze each other, instead there should
be two straight lines that intersect). In order to
do this, when looking for the successor pixel of the
current one, we begin by first testing in the offset
direction that the past few steps have already
gone in. The average direction update function is
as follows:

1. Number the 8 neighbors of a pixel from 0 to
7 in a clockwise fashion

2. Let D be the current average direction

3. Let D’ be the newly picked direction for the
current pixel

4. Let K be a decay constant between 0.0 and
1.0

5. Then the new average direction is D * K + D’
* (1.0 - K)

Now that we have these ”dense” strokes, we
must begin the simplication process. This is done
in a similar manner to edge collapse-based sim-
plification of 3D meshes, as described in [1]. We
define the simplication operation to be the re-
moval of a control point along the stroke (the
endpoints are excepted from this).The error func-
tion is the difference in overlap of the stroke and
its corresponding pixels between when that con-
trol point is present and when it is removed.

Figure 4: Stroke extraction
outcome

We create a
priority queue
in which we
insert all of
these control
point removals,
and then pick
the one with
the lowest
error delta.
Once a point
is removed,
we update the
entries which
might have been affected (in the case of linear
interpolation, only its immediate successor and
predecessor) and repeat the process. We continue
this until the total stroke error divided by the
stroke length grows beyond a certain limit.

PERFORMANCE

The Thor system is conceived to support real-time
operation (e.g. images are captured, strokes are
extracted and indexed as a whiteboard meeting
goes on). As a result, performance is a criterion to
consider. Using the current codebase, on a 1 GHz
G4 processor, with a dataset of 100 800 x 600 pixel
images (average of 174 strokes per frame), end-
to-end processing time measured was 5.89 seconds
per frame. This falls below our limit of 10 sec-
onds per frame, and leaves enough time for addi-
tional operations (such as indexing) to be done.
The other time-intensive task, transfer of images
from the camera, is not processor-intensive, and
can be done in parallel. That is, while the previ-
ously captured frame is being processed, the next
one is being fetched.

As for the processing per frame, the breakdown
into phases is as follows: loading of images takes
up 6.0% of the time, computation of differences
56%, thinning 5.8% and stroke extraction 32% (as
measured with a statistical sampling tool). Of the
time spent computing differences, most of it goes
towards separating the difference image into sub
images. As it can be seen, certain hot spots have
been observed, but they appear to be implemen-
tation specific and in the details, therefore easily
surmountable, thus performance should not prove

5



to be a barrier in the future.

DISCUSSION

In its current form, the system has achieved its ini-
tial goal of providing a foundation for the subse-
quent tasks of stroke indexing and searching. The
system shows that it is possible to extract strokes
from data captured by consumer grade cameras.
However, ease of use is not quite as ideal as it could
be. For example, in order to minimize extraneous
frame-to-frame differences, the camera must be at-
tached to a tripod, the white balance must be set
to a fixed value, and the focus distance must be
specified by hand. The latter two issues could be
compensated for by extra computation, it remains
to be seen if such a trade-off is worthwhile.

FUTURE WORK

As previously discussed, the work presented herein
is only a portion of the final Thor system. Now
that the capture and stroke extraction foundation
is complete, emphasis can be placed on the stroke
indexing and searching aspect of the project. As
a core of set of requirements, the system must be
scale, rotation and stroke order invariant (a re-
quirement methods such as the one described in
[5] do not fulfill). Additionally, it must be able to
cope with queries large datasets. A hierarchical
approach such as the one suggested by [3] may be
appropriate in order to be able to quickly cull out
irrelevant entries.

References

[1] Michael Garland and Paul S. Heck-
bert. Surface Simplification Using Quadric
Error Metrics. In Proceedings of SIGGRAPH
’97 (1997)

[2] Patrick Hew and Michael Alder. Strokes
from Pen-Opposed Extended Edges. (1999)

[3] Wing Ho Leung and Tsuhan Chen. Hier-
archical Matching for Retrieval of Hand-drawn
Sketches. In ICME 2003 Proceedings (2003)

[4] Ke Liu, Yea S. Huang, and Ching Y.
Suen. Robust Stroke Segmentation Method
for Handwritten Chinese Character Recogni-
tion. In International Conference on Document
Analysis and Recognition 1 (1997)

[5] D. Lopresti, A. Tomkins and J. Zhou. Al-
gorithms for Matching Hand-drawn Sketches.
Progress in Handwriting Recognition (1997)

[6] Elizabeth D. Mynatt, Takeo Igarashi,
W. Keith Edwards, and Antony
LaMarca. Flatland: New Dimensions
in Office Whiteboards. Proceedings of CHI’99
(1999)

[7] Metin Sezgin, Thomas Stahovich, and
Randall Davis. Sketch Based Interfaces:
Early Processing for Sketch Understanding.
Proceedings of PUI2001 (2001)

[8] P.S.P. Wang, and Y.Y. Zhang. A Fast and
Flexible Thinning Algorithm. Proceedings of
CHI’99 (1999) IEEE Transactions on Com-
puters 38, 5 (1989)

6


