Applications of Web Services to Digital Music Libraries
Mihai Parparita Brian Kernighan

Princeton University
May 5, 2003

Abstract

We present a system that attempts to impose
an organized structure on a very large set of
music files that lack any implicit arrangement.
Issues such as a lack of metadata, incorrect
information and human error are encountered
in this process. We deal with them by using
online services that maintain large databases of
music information. Integrating data from these
distinct services, as well as dealing with cases
where even these services lack the information
required, pose barriers as well. To resolve these
remaining problems, algorithmic approaches
are investigated.

1 Introduction

With the recent explosion of digital music
libraries, enabling fast, accurate user access to
their contents has become a significant task.
Although simple lists of files and songs may
suffice when working with collections whose
sizes are measured in the hundreds of items,
such methods begin to break down when
thousands or even tens of thousands of songs
are encountered. Such problems are further
exacerbated when working across multiple
collections, as distinct naming schemes, file
arrangements, etc., come into play. The most
common approach is to give up attempts at
organization entirely and to instead resort to a
query based interface that places the burden on
the user, i.e. he or she must know at least
something about the title, artist or album of a
song for it to be found. Additionally, such
systems usually do not provide a "context" for
a song, meaning what when it is found, it is
difficult to locate other songs that are on the
same album, recorded by the same artist or in
the same musical genre.

We present a system entitled "pTunes" that
attempts to solve all of these problems by using
web services in addition to more traditional
data mining approaches. To demonstrate its
advantages, we apply it to the music found on
the Princeton University LAN in the month of
April 2003, totaling 86,072 files. In addition to
providing us with a large dataset, these files
originate from 209 distinct users, thus also
allowing us to tackle the related problem of
integrating multiple music libraries. We
believe that the end result is a system that
enables intuitive browsing of a large quantity
of music.

2 Previous and Related Work

Because of the popularity of digital music
libraries, "jukebox"-like systems that help users
manage their collections are prevalent.
Programs such as iTunes [6], WinAmp [9] and
MP3 Voodoo [7] all provide some measure of
organization. Of these, WinAmp is
representative of the most primitive
organization scheme, since all it provides is a
long scrolling list of songs. iTunes builds on
this by wusing a three-paned interface to
represent artists, albums and songs. Finally,
MP3 Voodoo allows multiple "views" of a
collection, for example by year, artist or album
cover. However, all of these systems depend on
user input and initiative, e.g., in the last
example the user must provide all album cover
art. This may be feasible if the user is building
up his or her collection gradually and adds this
information progressively. However, when
importing one's existing, possibly large, music
collection into a catalog system, such
expectations are unreasonable.

Work in this area has been done from the
academic perspective as well. For example, [2]

attempts to use automatic genre classification
to organize collections. However, the approach
presented suffers from several drawbacks.
First, an exclusive reliance on automatically
extracted information means that subtle
variations in categorizations cannot be
captured, and accuracy is bound to be lower.
Secondly, the mode of presentation is a 2D
map where songs in the same genre tend to
cluster together. Although this may be
reasonable with small-sized music collections
(e.g., under 1,000 files), such a system does not
scale (due to visual clutter) when dealing with
something like our dataset.

3 Data Normalization

The choice of MP3 files as a dataset had the
advantage that this format has a reasonably
well developed system for metadata. In
addition to audio data, files can also contain
ID3 tags, which contain information such as
artist, album, title and genre. The first three
were used to index files in a large database.
This has the added advantage that duplicate
files would be referenced under a single song,
which helped to reduce visual clutter for the
user.

However, in order to efficiently group files
by song, the restrictions of matching had to be
reduced. Variations caused by such things as
typos, misspellings and abbreviations meant
that what to the human eye represents the same
song would end up with two distinct entries in
the database. A two pronged approach was
chosen to resolve this problem. Firstly, all
names were 'normalized," that is made
lowercase, stripped of white space, with
numbers expanded to their word equivalents,
common prefixes and suffixes such as "the"
and "an" removed, etc. However, to preserve
the familiarity of the original names to users,
all of these operations were done on secondary
copies of the strings that pTunes used
internally to keep track of files, while the

human-readable versions were presented in the
interface.

Though this covered some of the variations,
the issue of misspellings still remained. To
resolve this problem, a Perl module,
String::Similarity, which implements a fuzzy
string comparison as described in [1], was
used. With over 50,000 distinct title, album and
artist strings, a direct N x N comparison to find
similar strings would have been unreasonable.
Therefore, the assumption that at least the first
letter of a name would be correct was made,
thus significantly reducing the amount of
searching. In this way, similar strings could be
grouped together, and a "canonical" one could
be elected to replace all others in its group. The
one with the most appearances was chosen for
this, though correctness was not an issue, since
as previously stated normalized strings are not
visible to the end-user.

Although a large degree of similarity was
required for two strings to be declared
equivalent, there could still be false positives.
That is, the system has no way of knowing (for
example) that "Breeder" and "Breeders" are
two distinct groups. As a workaround for this,
a small companion web application was created
that could be used to flag false equivalences.
An administrator of such a system is presented
with a list of possible substitutions, and
seemingly incorrect ones are can be flagged
such that they are not taken into account (in the
present pass as well as future ones).

AR
T e B e e e e r
E— Ee——_— I
[E——— [E——— r
e oS m
[— T [ET———— [
el (ST r
swingoriginalbraadwayrecording originalbroadwayrecordings r
[p—— [T — [
system? systemf ~
tannenbaum tannenbaum r
T—p————— [FET———— [
fibeirice fthaira r
theme lthemes r
S rs————— ———— [
e— e r
W%{W\v—fﬁ?ﬁ

Figure 1: False Substitution Flagging

There was also the issue that some files
(about a quarter of those encountered) did not
possess some or all of the artist/album/title
metadata that interests us. In such cases an
alternative path was taken, with the file names
and directory structures (if any) being used to
extract information. This approach was based
on the observation that a few naming schemes
such as "<artist> - <title>.mp3" or "<track
number>. <artist> - <album> - <title>.mp3"
were common. These naming schemes usually
originate with the software that was initially
used to encode the MP3 files, though
occasionally more dedicated users will attempt
to re-label things with such a consistent naming
scheme themselves. For the purposes of this
system, files for which no discernible
information could be extracted at all were
ignored.

E@ Music
- 10,000 Mariacs
{:I 187 Lockdown
{:I 4 Skrings
-0 a3
{21 Activate Marlack
{21 Addis Black Widdow
{:I Aerosmith
{:I Aesop Rock
{:I Airnee Mann
=0 air
{17 10,000 Hz Legend
{1 Maon Safari
@ Premiers Symptomes
: {1 The Wirgin Suicides
1 &l sreen

301 Modular Mix.mp3

a 0z Casanova 70.mp3

3 03 Les Professionnels. mp3

a 04 T'ai dormi sous ['Eau.mp3

a 05 Le Soleil est pres de Mo.mp3
a 06 Californiz.mp3

3 07 Brakes On.mp3

Figure 2: Typical user file organization

4 Genre Estimation

We felt that the most crucial piece of
information needed to enable browsing of
songs is genre. Users are most likely familiar
with the organization of traditional record
stores, which usually separate artists by the
type of music they generally create. Our
system is somewhat more flexible, i.e. we can
have more specific genres since we have no
shelf-space to worry about, and we can also
allow an artist to be listed under multiple
genres. For example, Antonio Carlos Jobim’s

songs, such as “Girl From Ipanema” can be
described as falling under Jazz (at the most
generic level) and “Latin Jazz” more
specifically, but also at the same time under
“World Latin Music” and “Bossanova.” Being
able to determine all these genres accurately
meant that no matter which genre the user felt
it feasible for the artist should fall under, it
would be listed there. Therefore, choosing
genres for songs then became the main purpose
of our system, as well as the main metric by
which we could evaluate its success.

4.1 Internal Metadata

As previously mentioned, genre is one of
the pieces of metadata that can be contained
within MP3 files. When indexing files,
extracting this along with the other necessary
data proved to be very easy. Since this genre
information is present per song, and we are
concerned with categorizing artists, this meant
that we could get multiple pieces of data per
entry. A rough system of weights was devised,
where each genre had a number attached that
was proportional to the number of songs that
used it.

4.2 FreeDB Integration

FreeDB is a large online database that
attempts to collect metadata relevant to CDs in
circulation (specifically including artist, album
title, track titles and genre). Its main purpose is
to serve as an easy way to obtain track labels
for compact discs played in computers. As a
side effect of this aim, it has accumulated a
very large dataset (currently 947,185 CDs) that
attempts to encompass all albums ever
released. This data is all user submitted; the
common usage pattern is for a user to insert a
CD into the computer, which then looks up the
album (specifically a hash based on track
lengths) in the database. In the (common) case
that the information is already there, the data is
simply copied locally. If it is not, the user is

given the option of inputting it on the spot and
submitting it back to the server, so that others
may benefit in the future.

Due to the liberal policies of its maintainers
(FreeDB was started in response to CDDB's
(an earlier service) decision to claim all album
metadata as being their property), it is possible
to obtain the entire dataset that FreeDB has
accumulated and use it at will. The pTunes
system relies in part on a local copy of the
database that has been imported into a SQL
table and indexed by normalized artist (the
original database is in a directory/file structure
that is indexed by CD hash, which is not ideal
for our purposes).

To use this data within pTunes, the desired
artist is looked up in the table, and the genre
information for all albums of that artist is
extracted. Chances of matches are high; most
of music files have as their source encoded
CDs, with said CDs usually obtaining their
track information from FreeDB. Genre
information is not always present (since it is
not the main purpose of the database), but
given an artist with at least a couple of albums,
chances are that at least one will contain this
information.

Although FreeDB only provides one genre
datapoint per album, this data is viewed as
being more significant than the information
contained within files. Therefore the weighing
applied to this is directly proportional to the
number of tracks that were present in the
album (the idea being that, if each track was
represented by a file that had the correct genre
information, each one of them would
contribute an entry in the genre table with that
string).

4.3 Amazon.com Integration

Amazon.com, a large online retailer, is also
in possession of a large database of music
information, due to the number of CDs that it
lists in its catalog. Amazon exposes this data
using their "Amazon Web Services" interface

that supports an URL based query scheme that
returns XML documents as well as a more
formalized SOAP-based method. Because
Amazon is a commercial entity, which in part
derives its success from the quality of its
catalog, it was hoped that data obtained from
this service would be of superior quality to
other sources. Additionally, Amazon is a
source of other information about albums,
specifically cover art and related CDs, that is
appropriate to have in a system that aims to
encourage browsing.

To interface with Amazon, the URL query-
string based interface 1s wused, since its
simplicity seems more appropriate to the very
rigid and structured way in which the database
would be queried: a simple search by artist
name and album. The SOAP interface seemed
more appropriate for situations in which more
flexible queries were necessary. The service
offers the option of applying a user-specified
XSLT (XML Stylesheet Transform) to the
returned XML document, thus allowing data to
be massaged to a form that is easily parseable.

One barrier was encountered: although the
XML documents should in theory contain the
category that the product is listed under (in the
case of music, this is most often a genre),
almost none of the returned results seemed to
actually have these fields. Comparisons with
the regular, HTML-based store interface
revealed that it was present there, thus further
confounding the issue. In the end, the "clean"
approach of the XML interface had to be
"dirtied" a bit, since a secondary query that
parsed the HTML version of the product page
had to be done in order to obtain genre
information. There was still an advantage to
using the XML interface first; it could be used
for album cover image URLs,
recommendations and most importantly ASINs
(Amazon product IDs). These ASINs could
then be used to immediately select the proper
HTML page to parse for genre information.

4.4 Sound Analysis

Though the above data sources can be used
when enough information is available such that
a song can be looked up, there are cases where
this is not possible. Therefore, as a last resort
the pTunes system attempts to perform
automatic genre classification. This is done
through the MARSYAS system described by
[3]. Briefly, this system attempts to extract
features from audio data (e.g., timbre, texture
and instrumentation) and then to match them
against one of ten genre templates that it has
been trained for. The system claims 60 to 70%
accuracy, comparable to the abilities of humans
to discern musical genre. The fact that this
system could be plugged into pTunes with very
little modification (the analysis component is a
command-line utility) made it very appealing.

As a general mode of operation, this pass is
done after all other attempts at categorization
have failed. Remaining artists are listed, and a
few songs for each one are chosen and copied
locally. After some post processing
(MARSYAS expects input to be single-channel
sound sampled at 22 KHz) each file is fed in
turn to the analyzer and the results are recorded
in the database. Due to performance
considerations (analysis ran at 2x real-time on
the development system), only 30 second
samples of each songs were examine; however
past experiences with the MARSYAS have
shown that analyzing the full song provides
only marginal improvements.

4.5 Genre Data Uniformity

Though the various genre extraction
methods each provided their results, the issue
of integrating all of them into a coherent whole
still remained. Genres stored in the files
amount to 461 distinct strings, while the data
extracted from FreeDB contributes a further
5,860 and Amazon adds 1,459 more (the 10
that MARSYAS adds are insignificant by
comparison, and are a subset of the strings

contained in the files). Using all of these as is
is not an option; browsing through a list of
7,780 genres is no better than going through
the entire list of 9,994 artists. Therefore the
decision was taken to collapse all of these
genres into 140 "canonical" ones (listed at the
end of this report). There were two aspects to
this grouping. One was that the exact same
genre was represented in more than one way
(e.g. "Alternative Rock" can also be written as
"Alt. Rock") and the other was that some labels
were too specific (e.g. "Modern Romanian
Pop", of which only one song was present, was
better listed under "Eastern European" music).
Thus while the first grouping was of a very
similar nature to the string substitution that had
to be done to normalize artist/album/strings,
the second group is of a more semantic nature,
with some awareness of musical genres and
hierarchies being required.

The canonical genres were chosen
somewhat informally, with Amazon's system
giving the rough framework, which was then
altered where personal experience suggested
something more appropriate. To create the
"mapping table" for collapsing, a somewhat
brute force approach was taken. Using a small
helper application, a few hundred genre strings
could be viewed at one time and each could
then be mapped to the canonical genre that it
would fall under. Given enough time and
perseverance, this resulted in most of the input
genre strings being assigned to the right
canonical one.

Using these genre mappings and the
information extracted from the internal tag,
FreeDB, Amazon and MARSYAS data
sources, it was now possible to attempt to
categorize each artist into one or more genres.
The approach taken was to obtain a list of all
distinct canonical genres that were reported for
the artist, and to then assign a
weight/frequency count for each genre (as
described for each preceding data source).
Then the average frequency was computed, and
any genres which had a weight at least a third

of the value of this average were included (the
1/3 value was chosen empirically). This
prevented bad categorization information from
skewing results too much, while still allowing
eclectic artists to be listed in multiple
categories.

5 User Interface

To present all of the acquired information,
one of the previously mentioned interface
paradigms was extended. The iTunes 3-pane
interface underwent a few extensions to
accommodate genre information, album covers,
recommendations and the general sense of
"context" that we wanted to provide. First, an
additional pane was inserted such that the
hierarchy was now genre -> artist -> album ->
song, as shown in Figure 4. A more traditional
query based interface was still retained, as
evidenced by the search box in the upper right
corner. Search results would then appear in the
songs pane, and could be operated on normally,
just as if the user had browsed to them.

Then, an Info Bar was created that would
show information relevant to the current song.
This included the cover of its album (as
extracted from Amazon), the genres that were
extracted for that artist, similar albums as
recommended by Amazon, etc. An example of
the Info Bar as applied to a specific album is
shown in Figure 5.

This entire interface was hosted within a
web browser, partially to ensure cross-platform
compatibility, but also to leverage some web
concepts. Specifically, the concept of linking
was heavily used to show relationships
between items. For example, in the Info Bar
described above the listed genres are actually
links that lead to lists of other artists in that
same category. Also, when displaying songs in
the song pane, artist and album names are links
as well, so that the user can easily see the entire
contents of an album or the discography of an
artist. With further work on the backend, this
linking concept could be expanded such that

remixes of one song, or different performances
of a single classical piece could all be seen at a
glance.

6 Results

As previously mentioned, genre
categorization was used as the metric by which
the organization abilities of our system were
measured. As a baseline, we looked at the
number of artists that could not be placed in a
genre using only the information contained
within the files themselves (i.e. the MP3 ID3
genre tag), which turned out to be 43%. Further
algorithmic improvements (for example, when
encountering the artist string "<artist A> with
<artist B>", the data present for "<artist A>"
and "<artist B>" by themselves was used as
well) brought this number down to 38%.

Leveraging the FreeDB database lowered
the proportion of uncategorized artists from
38% to 23%, a 40% improvement. For a
database that claims to contain every single CD
in existence, this is perhaps somewhat
disappointing. Several reasons can be
postulated to account for this. One is that
FreeDB's ASCII-centric data makes searching
for international titles difficult. For example,
the album and song titles of Japanese artists
UA are listed in their Romanized equivalents,
while a user is much more likely to label things
using the original Japanese characters.
Furthermore, since genre is not its primary
concern, this information was sometimes
missing from album entries. Finally, since
FreeDB is fundamentally a user submitted
service, it is also sensitive to typos, not all of
which may be compensated for with the
substitution engine.

When the dataset obtained from Amazon
was integrated, the uncategorized percentage
now stood at 20%. This 13% improvement
over 23% is perhaps even more disappointing
than the one obtained from FreeDB. One
reason for this is that there is most likely a
great degree of overlap between the two

datasets, since they both focus on
commercially available CDs. However, since
Amazon's data is provided by paid employees,
it tends to be more consistent and less prone to
erTor.

Finally, when genre analysis was applied to
the remaining artists, the number of
uncategorized ones theoretically dropped to
zero. However, since the MARSYAS system
only makes loose guarantees about accuracy,
chances are that some of the artists are
mislabeled.

Uncategorized Artists

10

Percentage
N W
(=] S O

2
R\ N)
&
oﬂ\Q R 0‘\ Q‘e ?.(0 @v@g
Methods

Figure 3: Genre Assignment Results
7 Discussion

As a whole, the system mostly achieved its
task. That is, it is possible to have a coherent
browsing experience across a large dataset that
originates from multiple people. Informal tests
with users revealed that most were able to find
what they were looking for, and in situations
where they could not, it generally was the case
that the song was not present at all. Users were
generally pleasantly surprised by the
organization structure, but that is mostly
because their exposure to large scale music
libraries has been in the form of peer to peer
applications such as Kazaa. Those systems
make very few attempts at categorizing or even
cleaning up existing data using any sort of
"normalization."

Since the pTunes system was developed
rather organically, several concepts applied
later on in the project were not used in other
portions. For example, since the FreeDB
database contains a large list of artists, it could
be used to flag most of the false positives that
the substitution engine runs into. For example,
a simple search would reveal that both
"Breeder" and "Breeders" are artists in their
own right, and thus one should not be mapped
to the other. Similarly, the manual canonical
genre mapping process could be accelerated by
applying some of the techniques developed to
deal with typos, abbreviations and misspellings
in artist/title/album normalization. Though this
would not help with the semantic mappings
previously mentioned, it would remove most of
the mechanical aspects of the genre mapping
process.

8 Future Work

As previously mentioned, though the system
has succeeded in categorizing all of the music
that is available, correctness is another issue
entirely. Two approaches that could alleviate
this come to mind. Firstly, users could be
induced to validate the data themselves. In a
web environment with multiple users, it is
likely that some will care enough about their
favorite artists to make sure that they end up in
the right genre. Given a system that is easy
enough to use (e.g. a "Disagree?" link next to
the genres listed in the Info Bar that leads to a
simple form where a new genre can be chosen),
this could be a feasible approach. There is still
the issue that users may themselves provide
inaccurate data, but a majority rules or
moderation system should counteract this.
Similar systems have already been deployed on
sites such as Slashdot [8], which must cope
with a large quantity of user comments of
varying quality.

Another approach to consider is to
leverage another web service, specifically the
Google search engine. If an artist is categorized

under a genre, chances are that there exist web
pages mentioning both the artist and the name
of that genre. Using Google's web services
API, it should be possible to perform some
basic verification. Google can also be used to
enhance the concept of misspelling and typo
detection, since it also uses a “majority rules”
heuristic to correct search terms, except that its
dataset is several orders of magnitude larger
than the one pTunes uses, and thus could be
much more effective.

Although the current system has
recommendations obtained from Amazon, it
should be possible to extend it such that the
dataset itself is used to set up correlations
between artists, albums and songs.
Specifically, since the data is originally divided
up into collections, and persons A and B both
have artists I and II, then someone looking at
artist I may be interested in II and vice versa.
Such approaches are already being investigated

by [4].
9 References

[1] Eugene Myers, "An O(ND) Difference
Algorithm and its Variations."
Algorithmica Vol. 1 No. 2, 1986, pp. 251-
266;

[2] Andreas Rauber and Alexander Miiller-
Kogler, “Integrating Automatic Genre
Analysis into Digital Libraries.”
ACM/IEEE Joint Conference on Digital
Libraries

[3] George Tzanetakis and Perry Cook
"Musical Genre Classification of Audio
Signals.” IEEE Transactions on Speech
and Audio Processing, 10(5), July 2002

[4] http://echocloud.net/

[5] http://search.cpan.org/author/MLEHMAN
N/String-Similarity-0.02/

[6] http://www.apple.com/iTunes/

[7] http://www.mp3voodoo.de/

[8] http://www.slashdot.org/

[9] http://www.winamp.com/

Bl ues
Chi cago Bl ues
El ectric Bl ues
Country Bl ues
Del t a Bl ues
Texas Bl ues
Fermal e Vocal Bl ues
Zydeco Bl ues
Cl assi ca
Avant Cl assica
Chanber Muisic
Cl assical QGuitar
Conposers
Oper a
Sol o | nst runent al
Synphony
Country
Al't Country
Bl uegr ass
Cont enporary Country
Country Rock
Traditional Country
Honky Tonk
Rockabilly Reviva
Western Swi ng
El ectronic
Acid Jazz
Anmbi ent
Abstract Anbi ent
Dar k Anbi ent
Soundscape
Br eaks
Bi g Beat
Br eakbeat
Funky Breaks
Nu Skool Beats
Dance
Live & DJ
Cl ub
Downbeat
Dub Techno
Lounge
Trip Hop
Drum'n' Bass

Anmbi ent Drum ' n' Bass

Br eakcor e
Dar kst ep
Drill '"n' Bass

Intelligent Dance Misic

Jungl e
Techst ep
House
Anbi ent House
Deep House
Di sco House
Gar age
Speed Gar age
Happy Hardcore
Hard House
Organi ¢ House
I ndustri al
Col dwave

El ectroni ¢ Body Misic

Canonical Genres

Techno
Acid Techno
Detroit Techno
El ectro Techno
Gabber
Happy Hardcore
Rave
Tech House

Trance
Anmbi ent Trance
Goa Trance
Hard Trance
Mel odi ¢ Trance
Progressive Trance
Psytrance

Experi ment al

El ectroacoustic

Envi ronnent s

| nprovi sati on

Mnimalistic

Noi se

Fol k

60s Revi val

Anti - Fol k

British Fol k

Cont enmpor ary Fol k

Si nger - Songwr i t er

Tradi ti onal Fol k

Heavy Met al
Funk Met al
Hai r Met al
| ndustrial Metal
Gri ndcore
Nu Met al
Rap Core
Trash
Deat h Met al
Bl ack Met al
Doom Met al
Speed Met al
H p Hop

Abstract H p Hop
Bass
Gangsta Rap
| ndependent Hi p Hop
Turnt abl i st
A d School Hip Hop
Pop Rap
Sout hern Hi p Hop
Jazz
Be Bop
Cool Jazz
Hard Bop
Avant Garde
Post Bop
Latin Jazz
Soul Jazz
Jazz Fusion
Bi g Band
Di xi el and
Swi ng
Crossover Jazz
Lounge

Vocal Jazz Ska Punk

Moder n Rock R&B
Al ternative Rock Funk
Adult Alternative Di sco
Brit Pop G Funk
Grunge Cospel
Spani sh Rock Soul
Experi ment al Rock 70s Soul
I ndi e Rock Cont enporary R&B
Chanber Pop Mot own
I ndi e Fol k New Soul
I ndi e Garage Quiet Storm
I ndi e Pop Reggae
Jangl e Pop Root s Reggae
Lo Fi Dub Reggae
New Psychedel i a Dancehal |
Noi se Rock Lovers Rock
Post Rock Pop Reggae
Space Rock Ska
Jam Rock Rock St eady
New Wave Rock
CGot h Rock C assic Rock
Synt h Pop Aci d Rock
Post Punk Gar age Rock
Power Pop Bl ues Rock
A dies British Blues Rock
Doo VWp British Invasion
Early Rock & Roll Fol k Rock
Rockabi | | 'y @ am Rock
Sur f Prog Rock
Q her Kraut Rock
Acapel | a Sout hern Rock
Children's Hard Rock
Conedy/ Spoken Word Guitar Rock
Cont enmporary Christian Wor | d
Fi Il m Scor es African
Novel ty Tradi tional African
Seasonal Afro Pop
Show Tunes Afro Beat
Pop Moal ax
Dance Pop Rai
Easy Li stening Asi an
Eur o Pop I ndi an d assi cal
J- Pop Bonbay Pop
New Age Qawnal | i
Soft Rock Celtic
Teen Pop East ern Eur opean
Vocal i sts Kl ezner
Punk Rock I ndi genous Musi ¢
"77 Style Punk Latin
Cow Punk Cal ypso
Har dcor e Punk Mer engue
Eno Son
NY Hardcore Sal sa
a! Sanba
Pop Punk Bossa Nova
Pr ot o- punk Tropicalia
Psychobil |y MPB
Riot Grrl West ern Eur opean

10

T =T

__
asnoy

P[] R 80UE ! SE|AIS m
S0UEBS] @ DIUOIEDA|T m
2oUB] ¢ 2IUDJEET

aU0JEE|T m

vsaauab Bunwmo) ol

00:s Z UOREN|Eqooeaue) | 13 paadspog Sy A5pUn pajsl sl i g
LTiF [{oEd3punos] 42piey quio] 14 UoIn|oaay eyl ——
159 ze 2417 |13 Ul JuaLIAAD) 14 |EsELIEY -
ra- 104 e 847 (I35 Ul JUawaso]) 14 S0E|0% PUE AJNDJE
FEi0 ZC B4 |[13S U1 JUSLIEAD 149 paadspoc
0TS 0T 847 [|3S Ul JUaas0] 14a QUIOQUELS
ol T 247 135 U JUaaA0) 19 di Aepy, 2yl Umog Bulauny g
PG 247 [|3S Ul JUaLaso] 14a ay||a1Es
acig 8417 [|I35 UL eSO 14 diy Aep 2yl umog Buiuuny
FT!G ST |35 Y1 JUSWIEAD] 149 Buieasg oo)1
Y=t wasg 14 aseads pUE ‘adead fasoT
LPIG 149 Um0 HOEg SUI0D BULOD JSASN
SHEDT 14 Xl |ERUS5S] AR Shif
T2 i3q) (¥l 035a1) [p) Bueasg Buieasg oo |1
uonoy yabuaq Hieay wnq|y = 1S4y apL buog
_” UOTSUYOC UEC Ui 39 _” m.n_m__._n_m_.__m.._..c%n_mm
sounog _.;_u.__un_..__.m ERILEL
ploc Auo] v uelg "ABBeys ougaa L
uewg a 2SNy Apog ouoJgoa|3
Brng uiedg [BlAsnpUT
Sauo[g que|g asnoH pJEH
uoEAy 0 5|29 sbeaeg
¥a04pag asnoy
15Eag @ fjneaq a|Bung

Z uoneujeqobaaue]

Japiey quio]

ST 135 U1 JUSWE AT

sung |y

asg

LNGIE O
(FungiE ¢l s6405 B _ﬂ

&)
[.._..|

{
5

5151y

I{ESELIEH ILInAy
e hy
speayqqgny s gLy

ueafp [sp QI8
aLe

uaunng ues Uiy
Uiy
Assng Gojeuy _ﬂ

_——— P m

asnp aauedg JuabEgur
s58Q U, WUNJO

doy dug

auyaa] qnag
IEaquUmMag

[= asn

qn|o
aaue

al=F=Tu k'l =F=N
saduarg

saunjd-

Figure 4: pTunes overall interface

11

Song
I'll Go Dreaming

Album

Artist

ET is listed under the following
genres:

Electronic

Electronic : Dance

Electronic : Trance

Styles : Dance & D] @ House
Styles : Dance & D] : Trance
Styles : Dance & D] ; General

Recommendations

B Fsemm byBF
" Trancep-:hrt by Pau! Oakenfa.’d

Song
{Aagnelli + Nelson) - El Mino

Album

Artist

FPauwl Oakenfold 15 listed under
the following genres:

B FElectronic

B Electronic : Dance

B Electronic : House

B Electronic : Techno

B Electronic : Trance

B Indie Music : Dance & DJ :
General

Other

Styles : Dance & D1 : General
Styles : Dance & D] Trance
Styles : Soundtracks
General

B Other : Film Scores

Recommendations

B fopage in to Trance by Pauw!
Oakenfold

B Oyt There And Back by Pauw!
an Dy

B Bunkka by Paul Oakenfold

Figure 5: pTunes Info Bar detail and linking example

12

