
Thor: Efficient Whiteboard Capture and Indexing

Mihai Parparita Szymon Rusinkiewicz

Princeton University
{mparpari, smr}@cs.princeton.edu

May 3, 2004

Abstract

We present the Thor project, a system that
uses consumer-grade digital cameras to record
whiteboard content, and then stores the resulting
strokes in a space-efficient, vector format. This
acquisition portion then serves as the foundation
that enables captured data to be indexed and
then searched using graphical queries. The
query process uses proxy shapes to provide fast,
efficient matching. The system is tested on a
generated dataset, and results and an evaluation
are presented.

Keywords: Computer vision, stroke capture,
indexing, searching, shape distributions.

1 Introduction

Whiteboards (and their close cousins blackboards)
have become increasingly prevalent in office and
classroom settings. In the former, they are used
for impromptu meetings, for pre-drafting and for
keeping track of to-do lists and other reminders, as
enumerated in [11]. Blackboards have long been
used as instructional tools, possessing the advan-
tage over pre-made slides that material can be
constructed on the spot, better showing the pro-
cess by which the information presented was ar-
rived at. The trade-offs of using a whiteboard are
intransience and lack of concrete organizational
schemas. Having limited space, whiteboards can-
not be added to infinitely. The only option is
to erase existing content, but unless it is saved
in a somewhat clunky manner (scribbles are ei-
ther copied by hand or a picture is taken), data

is lost. The other disadvantage is that informa-
tion arrangement is very ad-hoc, and a viewer who
is unfamiliar with the layout is reduced to scan-
ning the entire whiteboard in order to find content
(though emphasis marks such as borders and dif-
ferent colors may be used as aids, but again, their
meaning is very much writer-dependent).

As a way of counteracting these issues, several
systems have been proposed, including [11, 15].
Using a stroke capture mechanism, they work
around the intransience problem. To help with
the limited space issue, [11] transforms the entire
whiteboard surface into a projected area, the con-
tents of which can (on a group by group basis) be
moved around and reduced in size in order to make
room for more strokes.

The primary drawbacks of these projects are the
use of specialized equipment and a lack of focus
on large-scale organization. The contribution that
the Thor system makes to the field is to provide a
very easily attainable capture method, and to fo-
cus more on the searching portion of the organiza-
tional side. Previous systems used enhanced cap-
ture environments such as Smartboards (in [11])
and the Mimio product (in [15]), both of which use
specialized marker tracking methods (ultrasonic in
some cases, radio tracking in others). Though
these have the advantages of being very precise
in terms of pen location and stroke timing, they
do have the usual drawbacks of specialized equip-
ment: lack of portability and price/complexity. In
contrast, Thor uses consumer-grade digital cam-
eras that are set to periodically capture tradi-
tional whiteboards or blackboards. These are eas-
ily available, and can be transported to any set-
ting.

1



With regards to the organizational angle, Thor
implements a scalable database-backed storage
mechanism that can be easily queried for infor-
mation. Strokes are stored, along with ”signa-
tures” (specifically, distributions of certain stroke
attributes) that allow us to compare them with
a graphical query. Since direct comparisons be-
tween the query strokes and all of the items in the
database are prohibitive, we introduce the concept
of a ”proxy shape.” All of the stored strokes are
compared to a small set of these proxies (very ba-
sic strokes such as squares and circles) in a pre-
computation step (done at capture time or off-
line). The query strokes are compared to the same
shapes, and then the items in the database that
have same distances to the proxies are selected.
Searching is thus reduced to simple numerical com-
parisons (specifically, range queries) that can be
very efficiently implemented.

The rest of this paper provides an overview of
the system and evaluates its performance on real-
world data. Section 2 describes how data is cap-
tured and converted into strokes, while sections
3 and 4 show how the resulting strokes are re-
spectively indexed and searched through. Section
5 describes how the storage of strokes is imple-
mented. We perform a real-world evaluation of
the Thor system, looking at it from both a per-
formance point of view (section 6) and a search
quality one (section 7). Finally, we discuss some
of our findings in section 8 and provide further di-
rections to explore in section 9.

2 Importing Strokes

The stroke acquisition portion of Thor system is
divided into a few distinct phases. First, the cam-
era must be calibrated. Then, the capture loop can
be entered. This consists of recording a new im-
age, computing the differences between it and the
previous frame, removal of occluders (e.g. people),
thinning of captured strokes, further image clean-
up, and finally conversion of stroke pixel data into
control points.

2.1 Calibration

Although the capture system relies on digital cam-
eras, the analog-to-digital conversion that goes on

within them is still an imprecise process. Noise,
subtle changes in lighting conditions and other
phenomena can all affect the captured image, re-
sulting in ”differences” that do not reflect actual
changes in the written content. As a result, we
must get a feel for what constitutes the normal
range of values for pixels in a supposedly static
environment. The way in which the Thor sys-
tem achieves this is to capture several (i.e. 8 or
more) frames of the environment in its neutral
state (nothing is written, there is no definite move-
ment in front of the camera). This can be be done
for a short duration, to get a feel for the instanta-
neous level of changes, or over a longer period of
time (e.g. a whole day) to see what the complete
range of variations can be. Once this is done, the
margin of error for each pixel can be determined,
so that true differences can be separated from spu-
rious ones.

This calibration stage also allows us to deter-
mine what constitutes the ”background” for the
strokes that are written and then later are erased.
Since whiteboards are not layered beyond the
board itself and the strokes drawn on top of it,
capturing the background in the beginning allows
us to not have to specifically keep track of what is
obscured and then later revealed.

2.2 Capture

Figure 1: Sample captured
image

Capture is cur-
rently done by
mounting the con-
tents of a digital
camera as yet
another directory
in the file system,
and then traversing
it while looking for
image documents.
This allows white-
board meetings to
be recorded with-
out a computer
being present, thus increasing portability of the
entire system. In the future, cameras that support
remote control could be used to record these
meetings in real-time.

Consumer-grade cameras currently support res-

2



olutions in the three to five megapixel range. The
Thor system can use images as low as 1 megapixel
(depending of whiteboard size and camera dis-
tance). In fact, lower resolution images have the
advantage of having less noise (if the camera down-
samples from a higher one), of being faster to pro-
cess, and of letting the camera store more images
without need for periodic downloading to a com-
puter. Most cameras use USB 1.1 connections
(with a transfer rate limit of 12 Mbps) and even
if that bottleneck were to be removed, the limiter
would then be the storage media, which usually
has speeds of around 3 MB/s. This prevents cap-
ture from being done much more often than once
every 10 seconds. Figure 1 shows an subsection of
a captured image.

As an alternative capture method, webcam-
grade video cameras were considered. These also
had the advantage of low cost (sometimes even
lower than digital cameras), ubiquity and high re-
fresh rates. However, quality was too low to allow
large whiteboards to be captured - despite nomi-
nal 640 x 480 resolutions most cameras deal poorly
with non-ideal lighting conditions.

2.3 Differences

Figure 2: Speckling in dif-
ference image

The difference al-
gorithm uses a very
simple pixel-by-
pixel approach. For
each pixel, we look
at the change in its
RGB components
when compared to
the previous image.
If this change is
greater than a fixed
constant times the
previously mea-
sured range, then
we mark it as changed. Changed pixels can mean
one of two things: a new stroke was drawn, or an
existing one was erased. To differentiate between
these two cases, we look to see if the new value is
similar to the calibrated background color at that
location. If this is the case, then background has
been revealed, and we conclude that a deletion
took place. If not, then a new addition must have

been made.
Since the entire stroke extraction process de-

pends on the difference algorithm, care must
be taken to ensure that its output is accu-
rate. Therefore, as a post-processing step,
we apply a despeckling algorithm to the dif-
ference image, in order to remove stray values.

Figure 3: Despeckling fig-
ure 2

The algorithm
works in two
passes. In the
first pass, we
compute for each
pixel how many
non-background
(eight-way) neigh-
bors it has. In
the second pass,
we can do one of
two things: remove
non-background
pixels because
they are isolated, or fill in background pixels
because they are completely surrounded by
non-background ones. The first is done by looking
to see how many non-background neighbors a
pixel has. If this value is less than two, and it
has no neighbors with values greater than or
equal to two, then the pixel is replaced with the
background color (we must also look at the counts
for neighbors, since if we only looked at the count
for the pixel itself we would remove endpoints
of single-pixel thick lines). In the ”filling in”
case, if a background pixel has seven or eight
non-background neighbors, then it is replaced
with the average color of its neighbors. This is
done in order to prevent these one pixel ”holes”
from affecting the thinning algorithm.

Once the differences are computed, the image
is split up into continuously connected sub-images
(so that sets of strokes are separated). For each
sub-image, stroke thickness is estimated by divid-
ing the total number of content pixels by the num-
ber of perimeter pixels (as described in [5]). If this
value is beyond a certain threshold (i.e. the stroke
is too thick), we assume that the so-called ”stroke”
is in fact an occuluder (e.g. a person) and the sub-
image should be discarded. The rest of the steps
are applied to each remaining sub-image individu-
ally.

3



2.4 Thinning

Figure 4: Results of thin-
ning

Once the pixels
representing the
newly-written
strokes are deter-
mined, we must
then reduce them
to their most basic
structure (this
means that, in its
current implemen-
tation, Thor does
not preserve stroke
thickness, but since
most markers and
chalk are of uniform thickness, this is not a serious
drawback). The process is called thinning, and
it involves traversing all edge pixels of a stroke,
iteratively removing all those that are deemed
extraneous until a single pixel thick ”skeleton”
remains. The thinning implementation that we
have chosen is described in [17]. This imple-
mentation has the advantages of performance
and of not ”eroding away” diagonal lines. The
paper leaves some functions unspecified, so the
implementations we have chosen are described
below:

Seeding function: This function must deter-
mine how many contour loops are present in the
image, and what their starting points are. Con-
tour loops are defined as continuously connected
set of edge pixels (for example, a line would have
one contour loop, a hollow circle two, and a figure
eight three). For this, we chose to first build a list
of all background pixels. Then, the first element
from this list is picked, and a 4-way floodfill is
done, removing all encountered background pixels
from the list. The first encountered edge (non-
background) pixel is used as the starting point
of the current contour loop. The process is re-
peated until no more background pixels are left
in the list, with each iteration representing a con-
tour loop. To determine the predecessor of a start
point, we pick any of its background-colored neigh-
bors, and scan counter-clockwise from it until we
find a non-background neighbor (scanning must be
done CCW since the successor function works in a
clockwise order, and we are working our way back-

wards).
Termination function: The thinning algo-

rithm works its way around each contour loop, re-
moving extraneous pixels. Since it can take multi-
ple passes for all these to be processed, the process
cannot be stopped after a fixed number of steps.
[17] does not specify an exact iteration termination
function, so one had to be devised for Thor. This
is not as simple as seeing if the same pixel was vis-
ited twice, since it could be encountered from one
direction and then another, or one portion of the
stroke may be much thicker, necessitating many
more passes. We therefore keep track of the pixel
immediately following the last deleted one, as well
as its successor. If we encounter this pair (in the
same order) twice, it means that we have done a
full loop without deleting any more edge pixels,
therefore we are done with this contour loop.

2.5 Stroke Extraction

Once we have the set of thinned stroke pixels, we
can begin to convert them to vector form, i.e. a
list of control points that are then connected us-
ing various interpolation methods (currently the
system uses simple linear interpolation, but more
elaborate interpolation methods such as Catmull-
Rom splines could also be used). Systems such as
the one described in [15] use more complex stroke
extraction mechanisms; for example one that sepa-
rate strokes into straight-line and curved portions.
Unfortunately, the system described therein de-
pends on having continuous pen input (i.e. being
aware of drawing speed and stroke timing). Since
our capture recognition process is off-line, we are
reduced to using a simpler mechanism that only
deals with the stroke pixels.

The stroke extraction algorithm works by first
generating vector versions with as many control
points as possible (i.e. one for each pixel) and
then removes the points in ascending order of er-
ror. Therefore, the first step must be to build up
these ”dense” strokes that incorporate every single
pixel. Superficially, this seems very simple, since
we have thinned the images already, and it should
be a matter of picking any pixel, and then fol-
lowing its non-background neighbors one after an-
other. However, things begin to appear more com-
plicated when taking into account the fact that

4



strokes can intersect one another, and thus the
same pixel may belong to more than one stroke.

Figure 5: Crossing pixels
that must be visited more
than once

Therefore, the first
step is to compute
for each pixel how
many times it can
be visited. Based
on the methods de-
scribed in [7], we
can determine this
based on the num-
ber of background to
non-background tran-
sitions that are made
as the pixels neigh-
borhood is walked, as
well as on the number of non-background neigh-
bors that it has. The number of transitions is one
indicative of how many strokes are intersecting at
this point. If there are two transitions, then there
is only one stroke and the pixel should only be tra-
versed once. If there are four, then there are two
strokes, and the pixel can be visited twice, as in
the case of the top example in figure 5. However,
we can have cases where the number of intersec-
tions is two or three, and yet the pixel is really at
an intersection of two strokes, as show in the lower
two examples in figure 5. This is where the num-
ber of non-background neighbors comes in to play.
Therefore, the following table is used to determine
the number of visits:

Transitions Non-bg. Neighbors Visits
0 any 0
1 any 1
2 < 5 1
2 ≥ 5 2
3 < 3 1
3 ≥ 3 2
≥ 4 any 2

Once we have determined how many times each
pixel can be visited, then we can begin the second
phase, the actual traversal of pixels. One thing
that must be taken into account is to make sure
that when going through an intersection we do not
make an unnatural turn (e.g. an X-shaped crossing
should not be separated into to L-shaped strokes
that graze each other, instead there should be two

straight lines that intersect). In order to do this,
when looking for the successor pixel of the current
one, we begin by first testing in the offset direction
that the past few steps have already gone in. The
average direction update function is as follows:

1. Number the 8 neighbors of a pixel from 0 to
7 in a clockwise fashion

2. Let d be the current average direction

3. Let d′ be the newly picked direction for the
current pixel

4. Let k be a decay constant between 0.0 and 1.0

5. Then the new average direction is d×k +d′×
(1.0− k)

If we do not find a new stroke pixel in the expected
direction, then we first test the pixels immediately
preceding and succeeding that direction, followed
by the ones two pixels away, and so on.

Figure 6: Stroke extraction
outcome

Now that we
have these ”dense”
strokes, we must
begin the simpli-
cation process.
This is done in a
similar manner to
edge collapse-based
simplification of
3D meshes, as de-
scribed in [3]. We
define the simpli-
fication operation
to be the removal
of a control point along the stroke (the endpoints
are excepted from this). The error function is the
difference in overlap (how many original pixels
does the interpolated stroke fall on) between
when that control point is present and when it
is removed. We create a priority queue in which
we insert all of these control point removals, and
then pick the one with the lowest error delta.
Once a point is removed, we update the entries
which may have been affected (in the case of
linear interpolation, only its immediate successor
and predecessor) and repeat the process. We
continue this until the total stroke error (i.e.
difference in overlap) divided by the stroke length
(to normalize) grows beyond a certain limit.

5



2.6 Hair Removal

Figure 7: Difference image
with ragged edges

One issue with
the described
stroke extraction
algorithm is that
it is vulnerable to
being mis-led by
spurious thinned
portions we call
”hairs.” As it
can be seen in
figure 7, the dif-
ference image has
a ragged enough
boundary to throw off the thinning algorithm,
the results of which are shown in figure 8. This
is caused by the aforementioned jagged edges
protruding by two or more pixels. When the
stroke extraction extraction algorithm is applied
to this image, it can tend to follow these hairs
when the fall in the same direction as most of the
previous stroke.

Figure 8: Thinned image ex-
hibiting ”hairs”

For example, if
we are proceeding
in a clockwise
fashion and we
get to the lower-
left corner of
the rectangle, we
would be much
more likely to
follow the hair
(and reach a dead
end) as opposed
to making the
turn and continuing along the other side of the
rectangle. This results in shapes that would
intuitively be described with only a single stroke
being separated into several. Furthermore, be-
cause these hairs are caused by what are initially
small protuberances in stroke outlines, it can
mean that seemingly similar input data can be
decomposed into very different strokes. This lack
of consistency can impact the accuracy of the
indexing and searching that we do in later phases.

In order to remove these ”hairs,” we chose
to implement a graph-based method, somewhat
similar to the one described in [7]. We cre-

ate a graph where (future) stroke crossings are
vertices and edges represent vertices that are
reachable by following previously unvisited pixels.

Figure 9: Results of graph
building

To determine
what constitutes
a crossing, we
use the same
definition as we
do in section 2.5,
when determining
how many times
a pixel can be
visited for stroke
extraction. We
also differentiate
between vertices
at the periphery of the graph (with only one
edge connected to them) and inner ones (with
more than one edge connected to them). Figure 9
shows the results of this graph construction, with
peripheral vertices being drawn in red, inner ones
in green, and the pixels that make up the edges
connecting them in random colors.

Using this graph structure we can very easily
remove the pixels that make up the unwanted
hairs. One key characteristic of a hair edge is that
must contain at least one peripheral vertex. How-
ever, we cannot remove all such edges indiscrim-
inately. Instead, we first compute the distribu-
tion of edge lengths (where the length is defined
by the number of pixels that make up each edge,
not the Euclidean distance between its vertices).

Figure 10: Removal of ”hair”
edges

Only those edges
with a peripheral
vertex and with
a length below a
certain threshold
value are actually
removed (they re-
moved both from
the graph and
from the image -
their correspond-
ing pixels are
replaced with the
background color). This is an iterative process,
since removal of an edge can convert what was
previously an inner vertex into a peripheral one,
thus uncovering more hairs. Figure 10 shows the

6



results of this operation. This image can then
be run through the stroke extraction step, and
results in a single stroke being used to describe
the entire shape, as one would intuitively expect.

2.7 Stroke Normalization

Some of the ways in which we determine charac-
teristics of a stroke depend very heavily on the
arrangement of the points that are used to de-
scribe it. Unfortunately these points, immedi-
ately following the stroke simplification step, are
not evenly distributed. One can image two large
rectangles, one unadorned and one with a complex
flourish in one of its corners. The former may be
described by as few as as four points, while the
other may have many more, with those that make
up the flourish dominating, count-wise. However,
the two strokes are perceptually more similar than
different, and so the unbalanced effect of the flour-
ish must be compensated for. We can achieve this
by normalizing the number of points that are used
to describe a stroke. By doing this normalization
so that the points are evenly spaced, we can ensure
that things like the aforementioned flourish do not
have an undue influence on any ”signature” that
we compute for the stroke.

The simplest way to do this normalization would
be to consider the stroke as a parametric function
f(t) for t from 0 to 1, and to then resample it at
even intervals of t. However, doing so may sig-
nificantly impact the appearance of the resampled
stroke when compared to the original. If we con-
sider a stroke with many sharp angles, it is possible
that these corners would be clipped off if a resam-
pled point doesn’t fall close enough to a corner
point. Therefore, we sacrifice some of the regular
sampling in order to better maintain stroke ap-
pearance.

Taking this detail-preserving constraint into ac-
count, our stroke normalization algorithm works
as follows (assuming we are trying to normalize
down to N points):

1. Let D be the total length of the stroke, as
measured by adding up the Euclidean dis-
tances between each of its points.

2. Build a list L of all ”critical” points, where
”critical” is defined as having an inner angle

of less than a threshold value.

3. Iterate over each pair of sequential critical
points p1 and p2 in L.

4. Let d be the distance between p1 and p2.

5. We must then insert n points between p and
p2, with n = d/D × (N − 1).

6. Insertion between p1 and p2 is done normally,
with the points being regularly spaced and lin-
early interpolated.

In addition to normalizing the number of points,
we also normalize for size (we take the larger of
the X and Y dimensions and then scale all points
such that that dimension is of a known length)
and position (the upper left corner of the bounding
box that encompasses the stroke points is moved
to (0, 0).

It should be noted that stroke simplification is
necessary even if we later normalize strokes so that
they have the same number of points. Had we left
the stroke unsimplified (every pixel in the thinned
image had a corresponding stroke point) it would
have been very difficult to determine what the crit-
ical points were, since all inner angles would have
been either 90 or 180 degrees. We could perhaps
have measured the the ratio between the Euclidean
distance and the distance along the stroke between
two random points, but even for a very low ratio we
would only have known that somewhere between
those two points there were significant curves or
corners, but not exactly where (i.e. which point
was critical).

3 Extracting Stroke Character-
istics

Now that we have placed strokes such that they are
of a known point count and size, we can begin to
extract certain ”signatures” that allow us to com-
pute numerical similarities between them. The as-
sumption is that a user’s query also takes the form
of strokes that are also passed through the same
normalization step. In the current incarnation of
the system, the user can draw the query using his
or her mouse, an input device that has different
characteristics (when it comes to drawing) from

7



the markers that were used to create the strokes
in our database. Therefore, we also support the
loading of pre-drawn queries, thus the whiteboard
may also be used as a query input mechanism.

Our goal in choosing stroke signatures was to
have things that were independent of stroke draw-
ing order (unlike [8]), position, scale and rotation.
For example, one aspect that we looked at was
the distribution of stroke inner angles (the angles
formed by the two segments on either side of a
stroke point). One can imagine that a (perfect)
circle would have all of its values concentrated in
a bucket around the 180 degree mark (depending
on how many points it was sampled with) while a
square would have most of the values in the 180
degree bucket with a few in the 90 degree one.
Obviously this characteristic alone does not dif-
ferentiate between all shapes (e.g. all rectangles,
regardless of aspect ratio, would have the same sig-
nature), but it is hoped that by combining several
such weak signatures we can determine a stronger
metric for shape similarity, in much the same way
that [6] proceeds.

3.1 Shape Signatures

In addition to the previously mentioned inner an-
gle distribution (from here on referred to as I3), we
have chosen several other distribution-based sig-
natures. They are based on the work done in 3D
shape searching described by [12], specifically:

• D2: Distances between two random points

• D3: Square root of the area of the triangle
defined by three random points

• A3: Angle between three random points

Figure 11: D2 distribution
with period spikes

One of the key
words in the pre-
ceding list is ”ran-
dom.” In our ini-
tial implementa-
tion, we defined
random as ”any
normalized stroke
point.” However,
due to the even
spacing that we
enforced in the

normalization step, we began to see periodic spikes
in the distribution. Since these were reflective of
our resampling technique and not of any stroke
characteristics, they would negatively impact at-
tempts to compute stroke similarities (since they
would be present in all distributions, they would
falsely boost the similarity amounts). This can be
seen in figure 11 which shows the D2 distribution
for a square. Although we have the expected spike
around the 3/4 mark (due to points on opposite
sides being picked), its emphasis is decreased due
to the other period peaks.

Figure 12: Smoother D2 dis-
tribution

In contrast,
figure 12 (same
distribution, same
shape) exhibits
much better
characteristics.
Here, instead
of picking only
stroke points,
we can pick any
spot along the
stroke. Generally

speaking, this truly random sampling is used for
the D2, D3 and A3 distributions, while I3 only
samples at the normalized stroke points.

We currently use 100 buckets for all distribu-
tions, and since we normalize for stroke scale, even
the D2 and D3 distributions have a known upper
bound (for the normalized scale S they are

√
2×S

and
√

S × S/2 respectively). When doing random
sampling we take 10000 such samples, a number
that is a good trade-off between getting enough so
that there is little variance from run to run and
not having too many so that computing the distri-
bution is not too time-consuming.

3.2 Distribution Distances

Now that we have these distributions for each
stroke, we need to able to compute a degree of
similarity between them, so that we can in turn
determine how similar their parent shapes are.
The simplest, most intuitive way of computing dis-
tances between histograms is to use a simple sum
of squared differences measure. Since both his-
tograms that we would compare have the same
number of buckets, we can just loop along both

8



of them, seeing what the differences from bucket
to bucket are. Unfortunately this only provides an
accurate metric when differences are very slight.
One can consider three histograms, one with a
large spike at bucket b, one with a similarly propor-
tioned spike at bucket b + 1 (and all other buckets
being of the same value), and finally one with the
same spike at b + 50 . The sum of square differ-
ence metric would report the distance between the
first two as being the same as that between the
first and third.

Instead, we use the Earth Mover’s Distance
(EMD) metric, as described in [13]. EMD works
by mapping bucket distances to the solution of a
transportation problem. Effectively, we consider
one histogram to be the supply while the other
represents the demand. We can then create paths
between the supply and demand points, with the
cost of the path being a function of the distance
between the two buckets (our chosen distance met-
ric is 1.0− e−d for d being the difference between
the bucket indices). The values of the buckets in
each histogram give us the supply and demand at
each point. The transportation problem is a linear
optimization problem and has well known iterative
solutions. Specifically, we use the simplex method
as implemented in the IBM OSL solver (part of
the COIN library as described in [14]) and pro-
vided through the FLOPC++ modelling library.
The EMD metric, though much more complex to
compute, would accurately differentiate between
the two previously mentioned cases for which sum
of squared distances would report the same dis-
tance.

3.3 Proxy Shapes

The previously described EMD metric provides
us with a reasonably accurate way of determin-
ing shape similarity (especially when used with all
four distributions that we have). However, it does
have the trade-off of performance. Some distribu-
tions such as I3 are normally very sparse and thus
need few paths between supply and demand buck-
ets. However, others such as D2 (as shown in figure
12) can encompass almost the full breadth of the
distribution, necessitating the full N × N set of
paths. Thus, computing the EM distance between
the query shape’s distributions and the distribu-

tions of a reasonably large dataset would take a
prohibitive amount of time. Part of this slowdown
is due to the toolkit that we use to compute EMD
distance - FLOPC++ is a general purpose library,
written with ease of use in mind as opposed to high
performance. [12] reports sub-millisecond times
for computing dissimilarity, whereas the values we
see are closed to a tenth to a quarter of a second.
However, even if we were to use a highly-optimized
function, we would still only see a linear increase
in performance, and the upper limit on the dataset
would still be low.

To alleviate this problem, we propose the use
of ”proxy” shapes that can be used as intermedi-
aries in the distance computation process. When
strokes are loaded into the dataset, distances from
each stroke’s distributions to those of the proxy
shapes are computed and stored. The process is
repeated for the query strokes, and in order to pro-
vide a result set we simply look for strokes with
similar distances.

We currently use two proxy shapes, a circle and
a square, since they have reasonably distinctive
distributions, as can be seen in figure 13. In the
future more shapes could be added, since the per-
formance cost of doing more comparisons is mini-
mal.

4 Handling Queries

As previously mentioned, proxy shapes are used to
determine which items in the database match the
user’s query. The process when importing strokes
is as follows:

1. Proxy shapes P1, P2, ..., Pn are loaded (cur-
rently just a circle and a square, thus n = 2)

2. For each basic shape i we compute histograms
Hi1, Hi2, ..., Him (the current distributions are
I3, D2, A3, and D3, thus m = 4)

3. When loading stroke data, we compute for
each stroke j m histograms Hj1, Hj2, ..., Hjm

along with the distances (using the EMD met-
ric) between Hi1 and Hj1, Hi2 and Hj2, ..., Him

and Hjm (each loaded stroke’s histogram has
n distances, one to each of its counterparts in
the basic shapes)

9



Figure 13: The distributions for the two chosen proxy shapes, a circle (left) and a square (right)

10



4. All of the above (strokes, histograms, dis-
tances) are stored. Distances are represented
as ratios, e.g. if stroke histogram Hj1 had dis-
tances of 12 and 36 to basic shape histograms
Hi1 (for i from 1 to n) then we would store
0.25 and 0.75 as the distance values.

When performing a query, we go through the
following steps:

1. For the query stroke q, we compute its his-
tograms Hq1, Hq2, ..., Hqm

2. For each of those histograms, we compute the
distances to their counterparts in the basic
shapes, and determine the ratios as described
above.

3. We do a query, looking for strokes in the
dataset whose histograms had similar distance
ratios to the basic shapes (currently ±0.3).

4. This is done per histogram type, and then if a
certain portion of the histograms agree that a
stroke was in the same distance range as the
query (currently 3/4), then we include it in
the result set.

5. We can then see what the parent shapes of the
matching strokes are, and pick those shapes
that have the most matches.

6. Ranking can be accomplished by ordering
shapes so those with strokes that have the
closest EMD to the query strokes are picked
as being the most relevant. An alternative to
consider is, since we are presumably dealing
with a much smaller subset of our database,
we can afford to do direct EMD comparisons
between the query strokes and those in the
result set.

5 Database Storage

All of the extracted strokes are stored in a rela-
tional database that allows us to easily find items,
as described in figure 14. We specifically use
the MySQL database since it is easily deployable
and has satisfactory performance when performing
range queries. Furthermore, the use of a database
system gives us distributed storage for free - as

long as all instances of the Thor program are con-
necting to the same server, it is possible to do
queries across strokes captured in several differ-
ent environments. Within the database, data (e.g.
stroke points and histogram buckets) is stored in
a very simple manner: a count followed by the
actual values. For more complex data storage, it
should be possible to switch to a more structured
arrangement, such as the InkML XML data for-
mat, described in [18].

6 Performance

The Thor system is conceived to support real-time
operation (e.g. images are captured, and strokes
are extracted as a whiteboard meeting goes on).
As a result, performance is a criterion to consider.

6.1 Capture Performance

Using the current codebase, on a 1 GHz G4 pro-
cessor, with an input set of 100 400 x 400 pixel
images (average of 10.2 strokes per frame), end-
to-end processing time measured was 9.64 seconds
per frame. This falls just below our limit of 10
seconds per frame, and with a bit more optimiza-
tion, will allow image capture to be done. This is
because although image capture and transfer from
the camera take a significant amount of time (on
the order of seconds), both are I/O-bound oper-
ations, and thus can be done in parallel with the
importing with minimal impact. That is, while the
previously captured frame is being processed, the
next one is being fetched.

As for the processing per frame, the breakdown
into phases is as follows: loading of images takes
up 1.2% of the time, computation of differences
6.8%, thinning 9.9% (with ”hair” removal respon-
sible for 3.9%) and stroke extraction 82% (as mea-
sured with a statistical sampling tool). Of the
stroke extraction time, the bulk (68% of the to-
tal time) is spent performing the stroke simplifi-
cation operation. Since we immediately normalize
strokes following the simplifcation step, it may be
worthwhile to investigate a simpler (if less accurate
or efficient, point-wise) algorithm that has better
performance characteristics.

11



frameID integer

timestamp integer

subImageID integer

frameID integer

top integer

left integer

bottom integer

right integer

strokeID integer

subImageID integer

pointCount integer

points blob

name varchar

histogramID integer

strokeID integer

type integer

min double

max double

bucketCount int

buckets blob

Distances Table

id1 integer

id2 integer

distance double

Column Type

Histograms Table
Column Type

Frames Table
Column Type

Sub-images Table
Column Type

Strokes Table
Column Type

Figure 14: Database tables showing column names, types and relations

12



6.2 Searching Performance

Once the strokes are captured, they are ready to
be indexed so that they may be later searched
through. Importing of all the strokes that we de-
scribed in the previous section resulted in a run-
ning time of 221.2 seconds per frame (21.68 sec-
onds per stroke). Of this time, 29% was spent com-
puting the four distributions for each stroke, and
71% determining the distance from each distribu-
tion to their correspondents in the proxy shapes
(currently just two). As it can be seen, the dis-
tance computation takes a significant amount of
time, and the indexing phase would greatly benefit
from a more optimized method. However, speed in
this phase is not critical to the system, since index-
ing can be performed off-line, long after capture is
completed.

Since searching is composed of similar opera-
tions, we can expect similar running times. A
query with three strokes run against a database
of 1,000 shapes took 45.2 seconds. Of this time,
25% was spent computing the distributions for the
query strokes, 46% determining distances to ba-
sic shapes, 18% doing the actual SQL queries to
determine the matched shapes, and 11% loading
the results from the database. It is important
to note that the bulk of the query time is spent
computing the distributions and distances for the
query strokes, the number of which is not likely
to go up significantly. By comparison, a small
amount of time is spent going through the actual
database, and as its size increases time spent do-
ing computations should increase logarithmically.
Therefore, we are confident that the Thor system
will have much better scaling characteristics than
other systems that do more intensive comparisons
between the query shape and each item stored in
the database.

7 Evaluation

Measuring the efficiency of Thor is a difficult task,
especially when trying to see how it performs in re-
lation to other approaches. Papers such as [6] use
datasets collected from several volunteers in order
to model variances in drawing behavior. However,
such an approach is not desirable in our case, since
not only does using a non-standard dataset make

it difficult to do comparisons, but it is also very
difficult to gather a large-enough dataset that we
could use for meaningful testing. Such problems
are also faced by other projects in fields that are
developing, such as the 3D model search engine
described in [2], which eventually led to the devel-
opment of the shape benchmark [16].

In our initial attempts at using a standardized
dataset, we considered using handwriting samples
that are commonly used to evaluate handwriting
recognition systems. Databases such as IAM, de-
scribed in [9], are freely available. However, they
do not quite fulfill our needs. The aims of Thor are
slightly different from handwriting projects (since
we do not attempt to do any recognition) and thus
a direct comparison would be meaningless. Fur-
thermore, handwriting data is often too high fre-
quency to be representative of normal whiteboard
content. Finally, measuring accuracy is much more
difficult due a lack of a pre-labeled dataset.

Figure 15: Source, displace-
ment maps and variants

The approach
we settled on is
derived from the
evaluation meth-
ods described in
[10]. We take a
reasonably large
set of line draw-
ings, in our case
249 images of
objects provided
by the psychology
labeling project
described in
[1]. For each of
these drawings
we generate 20
variants that are
representative of
drawing differ-
ences from user to
user. To provide
these variants,
we apply to each
image 20 ran-
domly generated
low-frequency dis-
placement maps,
as shown in figure

13



15. Since all of the original drawings were of
different objects, we can very easily determine
whether a match is correct (a variant of the same
shape) or not (another shape).

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Precision

R
e
c
a
ll

Figure 16: Precision vs. Recall

Figure
16 shows
the results
of various
searches
on this
generated
dataset.
We gen-
erate
various
preci-
sion/recall
combi-
nations
by varying the tolerances described in section
4. Considering the limitations of our system
(dealing with off-line stroke capture that has
no information about writing order or speed)
as well as our aims (writer independence and
invariance to rotation, scaling, translations and
small non-linear transformations), our system
does not perform so poorly. Overall the system
has an error rate (for all the searches conducted,
the number of incorrect matches over the total
matches) of 56%. As a point of reference, systems
such as the shape context one described in [10]
have error rates ranging between 2% to 13% for
similar datasets.

8 Discussion

The capture side of the system shows that it is
possible to extract strokes from data captured by
consumer grade-cameras. However, ease of use is
not quite as ideal as it could be. For example, in
order to minimize extraneous frame-to-frame dif-
ferences, the camera must be attached to a tripod,
the white balance must be set to a fixed value,
and the focus distance must be specified by hand
(otherwise auto-focus can choose a different focus
point depending on activity in the scene, thus af-
fecting the appearance of the whiteboard strokes).
The latter two issues could be compensated for by
extra computation; it remains to be seen if such a

trade-off is worthwhile.

Figure 17: Stroke segmentation
differences

The ap-
proach we
chose does
matching
based on
strokes, and
then the shapes
with the most
matched
strokes are
presented as
the results.
This has the
advantage
of support-
ing partial
matches, i.e.
if the query
represents only
a smaller piece
of a shape in
the database, it will still be found. This can be
contrasted with the approach used in [10] and
other papers, where distributions are computed
and matches are done directly at the shape
level. The trade-off is that we must have a very
robust stroke segmentation algorithm, otherwise
supposedly similar shapes will not be matched
(figure 17 shows an example of this, with different
strokes being drawn in different colors). This
explains the need for such steps as the ”hair”
removal described in section 2.6, as well as the
robust thinning algorithm that we chose. Further
work can be done in this area, for example by
removing or simplifying high-detail areas, which
are the locations that are most apt to confuse the
stroke extraction process.

Our result weighing system is currently rather
coarse. We do not take into account such factors
as spatial distribution (whether the arrangement
of the query strokes matches the arrangement of
the ones in the result) or weigh larger strokes any
differently from ones with smaller areas. We also
do not weigh the different distributions based on
their effectiveness (e.g. [12] found that the D2 dis-
tribution is the most robust when dealing with 3D
models). Evaluating the Thor system on an even
larger set of data would enable us to determine the

14



appropriate weighing factors.

9 Future Work

Now that we have developed this capture and
indexing foundation, we can begin to build on
it. For example, currently all strokes and shapes
are treated equally, with no semantic meaning at-
tached to any of them. We can begin to differenti-
ate between strokes, using the drawing style itself
as the differentiation mechanism. This is similar to
the way in which [11] allows the user to maintain
a to-do list. However, one limitation is that we are
dealing with a one-way medium, thus any changes
that the user would make would not be reflected
on the whiteboard itself ([11] works around this by
using a projector to display changes that the user
makes away from the whiteboard). We can also
build more specialized recognizers on top of the
Thor system, such as [4] which recognizes shapes
that can be used to define UML class diagrams.

The most obvious expansion of the system would
be to add more distributions and proxy shapes.
In the case of the former, one can look for more
complex descriptors, such as the shape contexts
described in [10]. Shape contexts refer to the dis-
tance angle distributions to/from n points on a
shape. Such distributions are more complex than
the simple 1D histograms that we have worked
with this far. We can either simply support this
2D distribution type, or we can reduce it to 1D
by first doing a k-means cluster analysis of all dis-
tributions encountered in our dataset, and then
simply storing the distribution of these clustered
values (one per sampled point) for each shape.

In order to achieve the more robust stroke seg-
mentation that we need, we can incorporate more
of the graph-based stroke clean-up and extraction
methods described in [7]. We can also support dis-
tributions at the shape level, giving the user the
option of using one or the other when conducting
a query.

References

[1] Analia Arevalo. Teasing Apart Actions and
Objects: A Picture Naming Study. Center for
Research in Language Newsletter 14, 2 (2002)

[2] Thomas Funkhouser, Patrick Min, Michael
Kazhdan, Joyce Chen, Alex Halderman,
David Dobkin, and David Jacobs. A Search
Engine for 3D Models. ACM Transactions on
Graphics 22, 1 (2003)

[3] Michael Garland and Paul S. Heckbert. Sur-
face Simplification Using Quadric Error Met-
rics. In Proceedings of SIGGRAPH ’97 (1997)

[4] Tracy Hammond, and Randall Davis. Tahuti:
A Geometrical Sketch Recognition System
for UML Class Diagrams. In Proceedings of
AAAI Spring Symposium on Sketch Under-
standing (2002)

[5] Patrick Hew and Michael Alder. Strokes from
Pen-Opposed Extended Edges. (1999)

[6] Wing Ho Leung and Tsuhan Chen. Hierar-
chical Matching for Retrieval of Hand-drawn
Sketches. In ICME 2003 Proceedings (2003)

[7] Ke Liu, Yea S. Huang, and Ching Y.
Suen. Robust Stroke Segmentation Method
for Handwritten Chinese Character Recogni-
tion. In International Conference on Doc-
ument Analysis and Recognition Proceedings
(1997)

[8] Daniel Lopresti, Andrew Tomkins, and
Jiangying Zhou. Algorithms for Matching
Hand-drawn Sketches. Progress in Handwrit-
ing Recognition (1997)

[9] Urs-Viktor Marti, and Horst Bunke. The
IAM-database: an English sentence database
for offline handwriting recognition. Inter-
national Journal on Document Analysis and
Recognition 5, 1 (2002)

[10] Greg Mori, Serge Belongie, and Jitendra Ma-
lik. Shape contexts enable efficient retrieval
of similar shapes. In Proceedings of Computer
Vision and Pattern Recognition (2001)

[11] Elizabeth D. Mynatt, Takeo Igarashi, W.
Keith Edwards, and Antony LaMarca. Flat-
land: New Dimensions in Office Whiteboards.
Proceedings of CHI’99 (1999)

15



[12] Robert Osada, Thomas Funkhouser, Bernard
Chazelle, and David Dobkin. Shape Distribu-
tions. ACM Transactions on Graphics 21, 4
(2002)

[13] Yossi Rubner, Carlo Tomasi, and Leonidas
J. Guibas. The Earth Mover’s Distance as
a Metric for Image Retrieval. International
Journal of Computer Vision 40, 2 (2000)

[14] Matthew J. Saltzman. COIN-OR: An Open-
Source Library for Optimization. Program-
ming Languages and Systems in Computa-
tional Economics and Finance (2002)

[15] Metin Sezgin, Thomas Stahovich, and Ran-
dall Davis. Sketch Based Interfaces: Early
Processing for Sketch Understanding. Pro-
ceedings of PUI2001 (2001)

[16] Philip Shilane, Patrick Min, Michael Kazh-
dan, and Thomas Funkhouser. The Princeton
Shape Benchmark. In Proceedings of Shape
Modeling International (2004)

[17] P.S.P. Wang, and Y.Y. Zhang. A Fast and
Flexible Thinning Algorithm. IEEE Transac-
tions on Computers 38, 5 (1989)

[18] World Wide Web Consortium. Ink Markup
Language. W3C Working Draft, (2004)
http://www.w3.org/TR/InkML/

16



Figure 18: Screenshot of the Thor interface

17


